An announcement that a rectifier is going to be installed in an urban area is likely to elicit disparaging remarks. The problem stems from the mindset that rectifiers are a cross-country pipeline phenomenon consisting of units located many miles apart and connected to groundbeds producing fairly high current outputs.

The direct application of the transmission system in a city could indeed be disastrous. Introducing a large amount of current into the earth from a few widely scattered groundbeds could cause a great deal of interference. But if properly engineered, impressed current cathodic protection (ICCP) can be used quite effectively and safely in urban or other congested areas. Three groundbed configurations can be considered: distributed anodes, deep anodes, and small low-output surface beds.

Distributed Anodes

In a distributed anode (parallel) system, the anodes are connected to a header cable and spaced perhaps 50 ft (15 m) apart along a pipeline. Each anode protects only a small amount of piping and the system is not very different from galvanic anodes. In one such installation, a bare 20-in (500-mm) interstation gas main within a large city was protected effectively, with no interference to adjacent buried gas and water piping and telephone cables.

Use of distributed anodes is also a common way to upgrade underground storage tanks. By placing the anodes around the tanks and along the dispenser piping, current is closely coupled to the protected structures and effects on other structures are minimal.

A word of caution, however—be careful with the driving voltage. One such installation was placed in a service station in very high-resistivity soil and energized at 85 V and 3 A. The resultant high-voltage gradient caused serious interference on a nearby gas line. Additional anodes were added to bring the voltage down to ~35 V; the problem was solved, but only at an appreciable added expense to the owner.

Deep Anodes

Deep anode groundbeds, which can be installed on small plots of ground or in an alley or parkway, provide effective protection for coated, isolated pipe in a subdivision or other distribution area. This configuration, which might be used to replace spent galvanic anodes, has been used successfully in several cities without creating interference problems. A variation of this is the semi-deep groundbed, perhaps 35 to 50 ft (10 to 15 m) and generally containing three or four anodes. These installations have been made quite successfully for gas piping in city streets and alleyways, as well as to upgrade underground tanks and piping in service stations.

Low-Output Surface Beds

Frequently it becomes necessary to protect relatively short sections of mains of ~3,000 ft (914 m) under streets or other paving to bring low areas up to protection or to replace dissipated galvanic anodes. This can often be done with a low-output rectifier and a small surface groundbed of one or two anodes. Ground-
Celebrating 25 years of proven quality

Permanent Portable Reference Electrode (model IT)
- Never needs rebuilding.
- No hazardous liquid waste disposal.
- End-grain wood membrane resists clogging.
- Optional protection to -35°F (-36°C).
- Useable in all positions.

Concentric Cathodic Protection Coupon (model UC)

Underground Reference Electrodes (model US)
- Cu/CuSO₄ and Ag/AgCl.
- 30 or 50 year design lives.

Make IR-free potential measurements without interrupting the current.

electrochemical devices, inc.
P.O. Box 355; Belmont, MA 02478-0003
Tel: 617-484-9085 Fax: 617-484-3923

www.edi-cp.com
Continued from p. 1

Using Magnetite Anodes in Deep Well Groundbeds

Deepest well anode groundbeds are specially designed and installed as part of an impressed current cathodic protection (ICCP) system to provide a relatively high amount of CP current to structures such as well casings. The selection of appropriate anode material is important to achieve long anode life based on consumption rates.

During the 1980s, one of the largest national oil companies in North Africa had negative experiences with the CP of its well casings due to constant failure of the anode systems after a relatively short operational period (one to five years). The anode systems were installed in areas where the soil and/or water contain a high chloride concentration.

After carefully studying the reasons for the system failures, it was determined that the anodic reaction occurring around the anodes when installed in acidic saline solutions caused chlorine gas production at the anode/electrolyte interface and also a high chlorine gas concentration around the anodes and their components. The presence of chlorine gas is one of the major reasons for an anode groundbed failure.

Laboratory tests in simulated environmental and service conditions showed that magnetite anodes were able to provide a more reliable and longer-lasting anode system than the previously used materials, with a minimum design life of 20-plus years. The known threats to anode groundbed systems, various case studies of large-scale applications, and the requirements for anode systems installed in high-chloride environments, as well as recent developments in improving and optimizing the reliability of the magnetite anode systems, are discussed in CORROSION 2014 paper no. 4470, “Magnetite Anodes for Deep Well Groundbeds,” by T. Krebs. $c

Model AC-15 AC Warning System
Real Time Monitoring of AC Voltage
Safety concerns with induced AC around your work force?
Be Sure
Be Safe!
Monitor the AC in real time and warn of dangerous voltage levels!

Superbright LED Indicators
Loud Audible Alarms
Calibration Test Unit Included
Everything fits inside the case

Detects 15V AC on Structure (NACE SP0177)
Provides Personnel Safety
Superbright LED Indicators
Loud Audible Alarms
Calibration Test Unit Included
Everything fits inside the case

“Our Quality is found in our People, Products, and Customer Service!”

TEL: +1 (909) 890-0700
Info@tinker-rasor.com

www.tinker-rasor.com

TINKER & RASOR

Summer 2015

Stay Current 3
When a light-rail line was constructed parallel to an existing interstate highway near Portland, Oregon, it crossed five pressurized, large-diameter (60 in [1.5 m]) steel water transmission pipelines that carry drinking water into the city from nearby reservoirs. The transit corridor was considered a high-consequence area because a pipe failure could disrupt both light-rail and highway traffic. To protect the pipes in the transit corridor where they crossed underneath the light-rail tracks, construction of the line included retrofitting the pipelines with a precast concrete box culvert casing and installing an impressed current cathodic protection (ICCP) system.

According to NACE International member Stuart Greenberger, senior engineer with the Portland Water Bureau, the main reasons for installing the box culvert casings were to protect the pipes from the increased soil load resulting from grade changes made to accommodate the train tracks, facilitate pipe operation and maintenance without disturbing the tracks, and electrically distance the pipes from close coupling with the light-rail system. “The new threat [to the water pipelines] was stray current corrosion from the light rail,” he says. Typically, cased pipelines comprise a carrier pipe inserted into a larger diameter casing pipe. In this particular instance, Greenberger explains, the five carrier pipelines would need to be drained and have segments removed for a casing pipe to be installed. “It would be an extensive job to get the water out of these pipes, and we didn’t want to take the conduit out of service,” he adds.

A practical and economical solution was to build a box culvert around the ~80-ft (24-m) portion of each pipeline that crossed under the light rail while the pipes remained in service. The box culvert was determined to be less costly than constructing a split casing around the intact pipe. Four of the pipelines, when originally installed, were made of steel with a di-electric coating. The fifth one was bar-wrapped steel cylinder concrete pressure pipe, which is comprised of a welded steel cylinder with steel reinforcing bars wrapped around the cylinder to provide strength. Corrosion protection for the steel components of concrete cylinder pipe is provided by an internal concrete lining and external mortar coating. When the highway was built, the portions of coated steel pipe that crossed under it were replaced with bar-wrapped steel cylinder concrete pressure pipe with poured concrete along the sides. Three of the coated steel pipelines were subsequently fitted with ICCP systems at areas along the route that were considered to be particularly corrosive.

To install the box culverts, small portions of each pipe were excavated at 10-ft (3-m) spans, and concrete support saddles were cast in place around these portions of the pipe while the remaining pipe was left in service. The box culvert was determined to be less costly than constructing a split casing around the intact pipe. Four of the pipelines, when originally installed, were made of steel with a dielectric coating. The fifth one was bar-wrapped steel cylinder concrete pressure pipe, which is comprised of a welded steel cylinder with steel reinforcing bars wrapped around the cylinder to provide strength. Corrosion protection for the steel components of concrete cylinder pipe is provided by an internal concrete lining and external mortar coating. When the highway was built, the portions of coated steel pipe that crossed under it were replaced with bar-wrapped steel cylinder concrete pressure pipe with poured concrete along the sides. Three of the coated steel pipelines were subsequently fitted with ICCP systems at areas along the route that were considered to be particularly corrosive.

To install the box culverts, small portions of each pipe were excavated at 10-ft (3-m) spans, and concrete support saddles were cast in place around these portions of the pipe while the remaining pipe was left in its existing bedding. Once the support saddles were completed, the pipe between the saddles was excavated. This technique provided a means to create support for the pipe while it was still in service, Greenberger notes.

After the pipe was completely excavated, the previously installed concrete around the haunch of the pipe was removed, and a new, continuous concrete foundation footing and floor slab were poured underneath and up the sides of the pipe. Hot-dip galvanized steel pipe saddles with a dielectric coating, designed to hold the pipe in place if the groundwater level should ever rise above the pipe and make it buoyant, were placed over the pipe and fastened to the floor slab with grout-covered bolts. The box culvert and end walls were then put into place and covered with a minimum of 5 ft (1.5 m) of backfill.

For each of the five water transmission pipelines, which are spaced ~1 mile (1.6 km) apart along the transit corridor to provide strength. Corrosion protection for the steel components of concrete cylinder pipe is provided by an internal concrete lining and external mortar coating. When the highway was built, the portions of coated steel pipe that crossed under it were replaced with bar-wrapped steel cylinder concrete pressure pipe with poured concrete along the sides. Three of the coated steel pipelines were subsequently fitted with ICCP systems at areas along the route that were considered to be particularly corrosive.

To install the box culverts, small portions of each pipe were excavated at 10-ft (3-m) spans, and concrete support saddles were cast in place around these portions of the pipe while the remaining pipe was left in service. The box culvert was determined to be less costly than constructing a split casing around the intact pipe. Four of the pipelines, when originally installed, were made of steel with a dielectric coating. The fifth one was bar-wrapped steel cylinder concrete pressure pipe, which is comprised of a welded steel cylinder with steel reinforcing bars wrapped around the cylinder to provide strength. Corrosion protection for the steel components of concrete cylinder pipe is provided by an internal concrete lining and external mortar coating. When the highway was built, the portions of coated steel pipe that crossed under it were replaced with bar-wrapped steel cylinder concrete pressure pipe with poured concrete along the sides. Three of the coated steel pipelines were subsequently fitted with ICCP systems at areas along the route that were considered to be particularly corrosive.

To install the box culverts, small portions of each pipe were excavated at 10-ft (3-m) spans, and concrete support saddles were cast in place around these portions of the pipe while the remaining pipe was left in service. The box culvert was determined to be less costly than constructing a split casing around the intact pipe. Four of the pipelines, when originally installed, were made of steel with a dielectric coating. The fifth one was bar-wrapped steel cylinder concrete pressure pipe, which is comprised of a welded steel cylinder with steel reinforcing bars wrapped around the cylinder to provide strength. Corrosion protection for the steel components of concrete cylinder pipe is provided by an internal concrete lining and external mortar coating. When the highway was built, the portions of coated steel pipe that crossed under it were replaced with bar-wrapped steel cylinder concrete pressure pipe with poured concrete along the sides. Three of the coated steel pipelines were subsequently fitted with ICCP systems at areas along the route that were considered to be particularly corrosive.

To install the box culverts, small portions of each pipe were excavated at 10-ft (3-m) spans, and concrete support saddles were cast in place around these portions of the pipe while the remaining pipe was left in service. The box culvert was determined to be less costly than constructing a split casing around the intact pipe. Four of the pipelines, when originally installed, were made of steel with a dielectric coating. The fifth one was bar-wrapped steel cylinder concrete pressure pipe, which is comprised of a welded steel cylinder with steel reinforcing bars wrapped around the cylinder to provide strength. Corrosion protection for the steel components of concrete cylinder pipe is provided by an internal concrete lining and external mortar coating. When the highway was built, the portions of coated steel pipe that crossed under it were replaced with bar-wrapped steel cylinder concrete pressure pipe with poured concrete along the sides. Three of the coated steel pipelines were subsequently fitted with ICCP systems at areas along the route that were considered to be particularly corrosive.

To install the box culverts, small portions of each pipe were excavated at 10-ft (3-m) spans, and concrete support saddles were cast in place around these portions of the pipe while the remaining pipe was left in service. The box culvert was determined to be less costly than constructing a split casing around the intact pipe. Four of the pipelines, when originally installed, were made of steel with a dielectric coating. The fifth one was bar-wrapped steel cylinder concrete pressure pipe, which is comprised of a welded steel cylinder with steel reinforcing bars wrapped around the cylinder to provide strength. Corrosion protection for the steel components of concrete cylinder pipe is provided by an internal concrete lining and external mortar coating. When the highway was built, the portions of coated steel pipe that crossed under it were replaced with bar-wrapped steel cylinder concrete pressure pipe with poured concrete along the sides. Three of the coated steel pipelines were subsequently fitted with ICCP systems at areas along the route that were considered to be particularly corrosive.

To install the box culverts, small portions of each pipe were excavated at 10-ft (3-m) spans, and concrete support saddles were cast in place around these portions of the pipe while the remaining pipe was left in service. The box culvert was determined to be less costly than constructing a split casing around the intact pipe. Four of the pipelines, when originally installed, were made of steel with a dielectric coating. The fifth one was bar-wrapped steel cylinder concrete pressure pipe, which is comprised of a welded steel cylinder with steel reinforcing bars wrapped around the cylinder to provide strength. Corrosion protection for the steel components of concrete cylinder pipe is provided by an internal concrete lining and external mortar coating. When the highway was built, the portions of coated steel pipe that crossed under it were replaced with bar-wrapped steel cylinder concrete pressure pipe with poured concrete along the sides. Three of the coated steel pipelines were subsequently fitted with ICCP systems at areas along the route that were considered to be particularly corrosive.

To install the box culverts, small portions of each pipe were excavated at 10-ft (3-m) spans, and concrete support saddles were cast in place around these portions of the pipe while the remaining pipe was left in service. The box culvert was determined to be less costly than constructing a split casing around the intact pipe. Four of the pipelines, when originally installed, were made of steel with a dielectric coating. The fifth one was bar-wrapped steel cylinder concrete pressure pipe, which is comprised of a welded steel cylinder with steel reinforcing bars wrapped around the cylinder to provide strength. Corrosion protection for the steel components of concrete cylinder pipe is provided by an internal concrete lining and external mortar coating. When the highway was built, the portions of coated steel pipe that crossed under it were replaced with bar-wrapped steel cylinder concrete pressure pipe with poured concrete along the sides. Three of the coated steel pipelines were subsequently fitted with ICCP systems at areas along the route that were considered to be particularly corrosive.
800+

CORRPRO'S 800+ EMPLOYEES INCLUDE APPROXIMATELY 250 NACE MEMBERS AND 173 NACE CERTIFIED PROFESSIONALS DEDICATED TO PROVIDING CATHODIC PROTECTION SOLUTIONS.

We believe that our employees’ dedication to building strong relationships within the industry is one of our most valuable resources. With over 45 offices on four continents, Corrpro is a leading global provider of corrosion control engineering services and equipment.

866.CORRPRO (US)
800.661.8390 (Canada)
44.1642.614106 (Europe)
966.3.802.7009 (Middle East)
www.corrpro.com

Corrpro Companies, Inc. is proud to be a part of the Aegion Corrosion Protection platform which also includes The Bayou Companies, CCSI, CRTS and United Pipeline Systems.

© 2015 Aegion Corporation
corridor, a separate ICCP system was installed. Each CP system has the same design, which includes an automatically controlled rectifier and a permanent copper/copper sulfate (Cu/CuSO\textsubscript{4}) reference electrode (CSE) for rectifier control that is positioned near the pipeline where it crosses under the light-rail tracks. The rectifier uses the CSE to determine the structure-to-electrolyte potential and then continuously adjusts its output to maintain a preset potential for the structure. A CP coupon drop tube test station, installed a few feet away from the CSE (and also near the point where the pipeline and light-rail tracks cross), provides a potential reading that represents the pipe-to-soil (P/S) potential. A 200-ft (61-m) deep continuous column anode bed, built 100 ft (30 m) below grade, contains 10 cast iron anodes in coke breeze. Each anode bed was buried 75 ft (23 m) away from the pipeline and test station, Greenberger says, so electrical current from the anode bed would protect all portions of the pipe crossing underneath the transit corridor.

Normal operation of each ICCP system requires ~1.0 A of rectifier output to maintain pipe potentials of −1.0 V, the “on” potential as measured at the CP coupon drop tube test station when the rectifier is operating and generating current. A nearly constant pipe potential indicates a well-insulated rail system with high track-to-earth resistance. Greenberger notes that rectifier output readings and potential readings indicated normal operation for four of the ICCP systems.

At one crossing, however, the ICCP system was experiencing a problem. When the rectifier was turned on, the current output required to maintain fairly constant pipe potentials varied between 0.0 and 4.0 A. When the rectifier was turned off, the P/S potentials varied from −1.0 to +2.0 V. The potential measurements displayed the characteristic signature of train movement, Greenberger explains, which meant the pipe was being subjected to stray current driven by the track voltage. The varying output from the rectifier indicated a track-to-earth short.

When the light-rail line was constructed, a track switch at a transit station was located directly over the pipe at this particular crossing. To ensure the track switch didn't freeze, a heater was installed on it and electrically grounded above the pipe. The grounding created a 25-\textOmega track-to-earth short and allowed current from the track to enter the ground just above the pipe. “The whole idea is to isolate the rail from the ground because that’s where stray current comes from, and we don’t want current exchange between the rail and pipe,” Greenberger says. “Instead, when they grounded the heater at that location, the rail was no longer isolated. As current was coming off the rail, the rectifier was putting current in the ground to offset the rail current. The amperage from the rectifier varied significantly because it was counteracting the stray current from the rail,” he adds. The rectifier was doing exactly what it was supposed to do, and doing an exceptional job, he notes, commenting that the rectifier was able to keep pace with the stray current signature of the train and hold the pipe potentials relatively constant—within 100 mV.

The stray current, measured by placing a shunt in the track switch heater’s electrical ground circuit, ranged from 0.0 to 300 mA. Greenberger comments that the close proximity of the short to the rectifier’s control reference electrode, coupled with the somewhat remote deep anode bed trying to offset the effect of the local current, caused a relatively small voltage gradient from the stray current to drive a large amount of current output from the rectifier, which can use up the anodes at a faster rate. In this case, he adds, the stray current problem was resolved by installing a polarization cell replacement (PCR) on the grounding for the track switch heater. The PCR blocks direct current (DC) but allows alternating current (AC) grounding, so the track switch heater is AC grounded and the DC stray current is blocked. This allowed the ICCP system to function properly.

To avoid a large current output from an automatically controlled rectifier to counterbalance a small amount of stray current at a closely coupled pipe-to-track crossing, Greenberger suggests operating automatic rectifiers in a current limiting mode, as well as monitoring the system. When a
RD-6® Coating System

“Non-Shielding” Corrosion Control Coatings for the Pipeline Industry

Polyguard’s RD-6 has been used in the North American rehab and girth weld market since 1988. RD-6 differentiates itself through its speed, simplicity and proven performance record.

With your mobile phone or tablet, scan the QR code image on the right or visit our RD-6 product web page at www.PolyguardProducts.com/pac

Polyguard®
Innovation based. Employee owned. Expect more.
Close-Interval Potential Surveys

The principle of a close-interval potential survey (CIPS or CIS) is to record the pipe-to-soil (P/S) potential profile of a pipeline over its entire length by measuring potentials at intervals that do not significantly exceed the depth of the pipe (often ~1 m).

The negative terminal of a portable recording voltmeter is typically connected to the pipeline at a test point through a spool of thin copper wire. The positive terminal is usually connected to a pair of copper/copper sulfate (Cu/CuSO₄) reference electrode probes that are alternately positioned in the ground over the pipeline at regular intervals in “leap-frog” fashion. This polarity displays the pipeline potentials as positive.

The actual survey typically involves three distinct tasks: 1) locating and marking the pipeline with stakes or flags inserted at regular intervals, based on tape measurements or chaining; 2) data collection, including P/S potentials and notation of physical features along the right-of-way with global positioning system (GPS) coordinates collected separately for these features; and 3) clearing the right-of-way of survey wire and other materials. The field crew must be prepared to identify and repair breaks of the trailing copper wire; areas such as road crossings and stockyards may require the use of heavier, insulated wire that is resistant to breakage.

Because the potential of interest is at the structure-electrolyte boundary, it is important to consider possible voltage (IR) drop errors that result from the flow of current through the earth the stray current. For example, during the construction of box culverts for similar projects, canister anodes were installed for the CP system. Since an automatically controlled pipeline CP system might trace a voltage (IR) gradient in the soil, Greenberger suggests making the control reference electrode integral with a CP coupon test station, including a drop tube, where possible.

Close-Interval Potential Surveys

The principle of a close-interval potential survey (CIPS or CIS) is to record the pipe-to-soil (P/S) potential profile of a pipeline over its entire length by measuring potentials at intervals that do not significantly exceed the depth of the pipe (often ~1 m).

The negative terminal of a portable recording voltmeter is typically connected to the pipeline at a test point through a spool of thin copper wire. The positive terminal is usually connected to a pair of copper/copper sulfate (Cu/CuSO₄) reference electrode probes that are alternately positioned in the ground over the pipeline at regular intervals in “leap-frog” fashion. This polarity displays the pipeline potentials as positive.

The actual survey typically involves three distinct tasks: 1) locating and marking the pipeline with stakes or flags inserted at regular intervals, based on tape measurements or chaining; 2) data collection, including P/S potentials and notation of physical features along the right-of-way with global positioning system (GPS) coordinates collected separately for these features; and 3) clearing the right-of-way of survey wire and other materials. The field crew must be prepared to identify and repair breaks of the trailing copper wire; areas such as road crossings and stockyards may require the use of heavier, insulated wire that is resistant to breakage.

Because the potential of interest is at the structure-electrolyte boundary, it is important to consider possible voltage (IR) drop errors that result from the flow of current through the earth the stray current. For example, during the construction of box culverts for similar projects, canister anodes were installed for the CP system. Since an automatically controlled pipeline CP system might trace a voltage (IR) gradient in the soil, Greenberger suggests making the control reference electrode integral with a CP coupon test station, including a drop tube, where possible.

More information on this case study can be found in CORROSION 2014 paper no. 4008, “Corrosion Control System Performance for Large Diameter Water Mains in a Light-Rail and Interstate Highway Corridor,” by S. Greenberger and G. Wallis.

Contact Stuart Greenberger, Portland Water Bureau—e-mail: Stu.Greenberger@portlandoregon.gov.
NACE Cathodic Protection Course Schedule

July–December 2015

China
- **CP Interference**
 - Beijing, China November 9-14, 2015

Colombia
- **CP3—Cathodic Protection Technologist**
 - Bogota, Colombia July 6-11, 2015
- **CP4—Cathodic Protection Specialist**
 - Bogota, Colombia September 14-19, 2015

Egypt
- **CP4—Cathodic Protection Specialist**
 - Cairo, Egypt August 15-20, 2015

India
- **CP1—Cathodic Protection Tester**
 - Mumbai, India August 3-8, 2015
- **CP2—Cathodic Protection Technician**
 - Mumbai, India August 10-15, 2015

Malaysia
- **CP1—Cathodic Protection Tester**
 - Kuala Lumpur, Malaysia September 7-12, 2015
- **CP2—Cathodic Protection Technician**
 - Kuala Lumpur, Malaysia September 14-19, 2015

Saudi Arabia
- **CP1—Cathodic Protection Tester**
 - Dammam, Saudi Arabia August 22-27, 2015
- **CP2—Cathodic Protection Technician**
 - Dammam, Saudi Arabia August 29-September 3, 2015
 - Dammam, Saudi Arabia December 12-17, 2015

South Africa
- **CP1—Cathodic Protection Tester**
 - Midrand, South Africa September 14-19, 2015
- **CP2—Cathodic Protection Technician**
 - Midrand, South Africa September 14-19, 2015
- **CP4—Cathodic Protection Specialist**
 - Midrand, South Africa November 23-28, 2015
- **CP Interference**
 - Midrand, South Africa October 26-31, 2015

Spain
- **CP2—Cathodic Protection Technician**
 - Madrid, Spain October 5-10, 2015

Trinidad & Tobago
- **CP1—Cathodic Protection Tester**
 - Marabella, Trinidad August 2-7, 2015

United Arab Emirates
- **CP1—Cathodic Protection Tester**
 - Dubai, UAE August 8-13, 2015
 - Dubai, UAE August 29-September 3, 2015
- **CP2—Cathodic Protection Technician**
 - Dubai, UAE August 15-20, 2015
 - Dubai, UAE September 5-10, 2015
- **CP3—Cathodic Protection Technologist**
 - Dubai, UAE September 26-October 1, 2015

United States of America
- **CP1—Cathodic Protection Tester**
 - Rosebush, MI July 12-17, 2015
 - Houston, TX July 19-24, 2015
 - Houston, TX July 26-31, 2015
 - Livermore, CA July 27-August 1, 2015
 - Houston, TX August 2-7, 2015
 - Houston, TX August 9-14, 2015
 - Livermore, CA August 24-29, 2015
 - Houston, TX August 30-September 4, 2015
 - Houston, TX September 13-18, 2015
 - Tulsa, OK September 27-October 2, 2015
 - Rosebush, MI October 4-9, 2015
 - Houston, TX October 4-9, 2015
 - Houston, TX October 25-30, 2015
 - Houston, TX November 1-6, 2015
 - Claysville, PA November 8-13, 2015
 - Houston, TX November 15-20, 2015
 - Houston, TX November 29-December 4, 2015
 - Chicago, IL December 6-11, 2015
 - Plano, TX December 13-18, 2015
 - Houston, TX December 13-18, 2015
- **CP2—Cathodic Protection Technician**
 - Houston, TX July 12-17, 2015
 - Houston, TX July 19-24, 2015
 - Plano, TX July 26-31, 2015
 - Houston, TX August 2-7, 2015
 - Houston, TX August 16-21, 2015
 - Houston, TX August 29-September 4, 2015
 - Houston, TX September 20-25, 2015
 - Houston, TX September 27-October 2, 2015
 - Houston, TX October 11-16, 2015
 - Houston, TX November 8-13, 2015
 - Claysville, PA November 15-20, 2015
 - Houston, TX December 6-11, 2015
- **CP2—Cathodic Protection Technician—Maritime**
 - Houston, TX August 23-28, 2015
- **CP3—Cathodic Protection Technologist**
 - Houston, TX July 12-17, 2015
 - San Bernardino, CA July 19-24, 2015
 - Kilgore, TX August 2-7, 2015
 - Anchorage, AK August 23-28, 2015
 - Houston, TX October 4-9, 2015
- **CP4—Cathodic Protection Specialist**
 - San Bernardino, CA July 19-24, 2015
 - Anchorage, AK August 30-September 4, 2015
 - Houston, TX December 6-11, 2015
- **Coatings in Conjunction with Cathodic Protection**
 - Houston, TX July 26-31, 2015
 - Houston, TX September 13-18, 2015
 - Houston, TX November 15-20, 2015
- **CP Interference**
 - Houston, TX September 13-18, 2015

For the most up-to-date course schedules and course information, visit nace.org/eduschedule.
<table>
<thead>
<tr>
<th>COMMITTEE</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>STG 05</td>
<td>Cathodic/Anodic Protection</td>
</tr>
<tr>
<td>STG 30</td>
<td>Oil and Gas Production—Cathodic Protection</td>
</tr>
<tr>
<td>TEG 016X</td>
<td>Cathodic Protection and Corrosion Control Research Development</td>
</tr>
<tr>
<td>TEG 022X</td>
<td>Corrosion Control Coordinating Committee</td>
</tr>
<tr>
<td>TEG 024X</td>
<td>DC Traction Stray Current Problems</td>
</tr>
<tr>
<td>TEG 043X</td>
<td>Reinforced Concrete: Cathodic Protection</td>
</tr>
<tr>
<td>TEG 166X</td>
<td>Cathodic Protection in Seawater—Discussion of Current Topics</td>
</tr>
<tr>
<td>TEG 179X</td>
<td>Cathodic Protection</td>
</tr>
<tr>
<td>TEG 262X</td>
<td>Interference Problems</td>
</tr>
<tr>
<td>TEG 338X</td>
<td>Cathodic Protection Monitoring: Use of Coupons</td>
</tr>
<tr>
<td>TEG 363X</td>
<td>Close-Interval Surveys and CP Surveys</td>
</tr>
<tr>
<td>TEG 368X</td>
<td>Electric Utility Transmission and Distribution Corrosion and Grounding: Discussion of Issues</td>
</tr>
<tr>
<td>TG 018</td>
<td>Steel, Structural: Corrosion Control of Piling in Nonmarine Applications</td>
</tr>
<tr>
<td>TG 045</td>
<td>Reinforced Concrete: Anode Test Procedures</td>
</tr>
<tr>
<td>TG 046</td>
<td>Cathodic Protection of Prestressed Concrete Elements</td>
</tr>
<tr>
<td>TG 047</td>
<td>Reinforced Concrete: Sacrificial Cathodic Protection of Reinforced Concrete Elements</td>
</tr>
<tr>
<td>TG 167</td>
<td>Review of NACE SP0388-2007</td>
</tr>
<tr>
<td>TG 168</td>
<td>Cathodic Protection Systems, Retrofit, for Offshore Platforms</td>
</tr>
<tr>
<td>TG 210</td>
<td>Cathodic Protection Coupon Technology</td>
</tr>
<tr>
<td>TG 284</td>
<td>Review of NACE SP0196-2011</td>
</tr>
<tr>
<td>TG 297</td>
<td>Direct Current (DC) Operated Rail Transit and Mine Railroad Stray Current Mitigation—Review Report 10B189</td>
</tr>
<tr>
<td>TG 356</td>
<td>Reinforced Concrete: Stray Current-Induced Corrosion</td>
</tr>
<tr>
<td>TG 362</td>
<td>Electrical Cables for Cathodic Protection Use: State-of-the-Art Report</td>
</tr>
<tr>
<td>TG 388</td>
<td>Cathodic Protection Rectifier Safety</td>
</tr>
<tr>
<td>TG 430</td>
<td>AC Corrosion on Cathodically Protected Pipelines: Standard Practice for Risk Assessment, Mitigation, and Monitoring</td>
</tr>
<tr>
<td>TG 438</td>
<td>Reinforced Concrete: Galvanic Anode Test Procedures</td>
</tr>
<tr>
<td>TG 446</td>
<td>Review and Revise as Necessary SP0186-2007</td>
</tr>
<tr>
<td>TG 505</td>
<td>Review and Revise as Necessary NACE SP0492-2006, “Metallurgical and Inspection Requirements for Offshore Pipeline Bracelet Anodes”</td>
</tr>
<tr>
<td>TG 519</td>
<td>State-of-the-Art Report on Manufacturing of Aluminum Anodes</td>
</tr>
<tr>
<td>TG 526</td>
<td>Standard Practice for Cathodic Protection of Structures Submerged in Fresh Water</td>
</tr>
<tr>
<td>DOCUMENT</td>
<td>TITLE</td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>01102</td>
<td>State-of-the-Art Report: Criteria for Cathodic Protection of Prestressed Concrete Structures</td>
</tr>
<tr>
<td>01104</td>
<td>Electrochemical Realkalization of Steel-Reinforced Concrete—A State-of-the-Art Report</td>
</tr>
<tr>
<td>01105</td>
<td>Sacrificial Cathodic Protection of Reinforced Concrete Elements—A State-of-the-Art Report</td>
</tr>
<tr>
<td>01110</td>
<td>Stray-Current-Induced Corrosion in Reinforced and Prestressed Concrete Structures</td>
</tr>
<tr>
<td>01210</td>
<td>Cathodic Protection for Masonry Buildings Incorporating Structural Steel Frames</td>
</tr>
<tr>
<td>05101</td>
<td>State-of-the-Art Survey on Corrosion of Steel Piling in Soils</td>
</tr>
<tr>
<td>05107</td>
<td>Report on Corrosion Probes in Soil or Concrete</td>
</tr>
<tr>
<td>05114</td>
<td>High-Voltage Direct Current Interference</td>
</tr>
<tr>
<td>11100</td>
<td>Use of Reference Electrodes for Atmospherically Exposed Reinforced Concrete Structures</td>
</tr>
<tr>
<td>30105</td>
<td>Electrical Isolation/Continuity and Coating Issues for Offshore Pipeline Cathodic Protection Systems</td>
</tr>
<tr>
<td>35108</td>
<td>One Hundred Millivolt (mV) Cathodic Polarization Criterion</td>
</tr>
<tr>
<td>35110</td>
<td>AC Corrosion State-of-the-Art Corrosion Rate, Mechanism, and Mitigation Requirements</td>
</tr>
<tr>
<td>35201</td>
<td>Technical Report on the Application and Interpretation of Data from External Coupons Used in the Evaluation of Cathodically Protected Metallic Structures</td>
</tr>
<tr>
<td>1E100 (2012 Edition)</td>
<td>Engineering Symbols Related to Cathodic Protection</td>
</tr>
<tr>
<td>6A100</td>
<td>Coatings Used in Conjunction with Cathodic Protection</td>
</tr>
<tr>
<td>SP0575-2007 (formerly RP0575)</td>
<td>Internal Cathodic Protection (CP) Systems in Oil-Treating Vessels</td>
</tr>
<tr>
<td>SP0290-2007 (formerly RP0290)</td>
<td>Impressed Current Cathodic Protection of Reinforcing Steel in Atmospherically Exposed Concrete Structures</td>
</tr>
<tr>
<td>SP0107-2007</td>
<td>Electrochemical Realkalization and Chloride Extraction for Reinforced Concrete</td>
</tr>
<tr>
<td>SP0177-2014 (formerly RP0177)</td>
<td>Mitigation of Alternating Current and Lightning Effects on Metallic Structures and Corrosion Control Systems</td>
</tr>
<tr>
<td>SP0572-2007 (formerly RP0572)</td>
<td>Design, Installation, Operation, and Maintenance of Impressed Current Deep Anode Beds</td>
</tr>
<tr>
<td>SP0286-2007 (formerly RP0286)</td>
<td>Electrical Isolation of Cathodically Protected Pipelines</td>
</tr>
<tr>
<td>SP0196-2011 (formerly RP0196)</td>
<td>Galvanic Anode Cathodic Protection of Internal Submerged Surfaces of Steel Water Storage Tanks</td>
</tr>
<tr>
<td>RP0193-2001</td>
<td>External Cathodic Protection of On-Grade Carbon Steel Storage Tank Bottoms</td>
</tr>
<tr>
<td>SP0186-2007 (formerly RP0186)</td>
<td>Application of Cathodic Protection for External Surfaces of Steel Well Casings</td>
</tr>
<tr>
<td>RP0104-2004</td>
<td>The Use of Coupons for Cathodic Protection Monitoring Applications (ANSI approved)</td>
</tr>
<tr>
<td>SP0100-2014 (formerly RP0100)</td>
<td>Cathodic Protection to Control External Corrosion of Concrete Pressure Pipelines and Mortar-Coated Steel Pipelines for Water and Waste Water Service</td>
</tr>
<tr>
<td>SP0169-2013 (formerly RP0169)</td>
<td>Control of External Corrosion on Underground or Submerged Metallic Piping Systems</td>
</tr>
<tr>
<td>SP0207-2007 (formerly RP0207)</td>
<td>Performing Close-Interval Potential Surveys and DC Surface Potential Gradient Surveys on Buried or Submerged Metallic Pipelines</td>
</tr>
<tr>
<td>DOCUMENT</td>
<td>TITLE</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
</tr>
<tr>
<td>SP0285-2011</td>
<td>Corrosion Control of Underground Storage Tank Systems by Cathodic Protection</td>
</tr>
<tr>
<td>(formerly RP0285)</td>
<td></td>
</tr>
<tr>
<td>SP0387-2014</td>
<td>Metallurgical and Inspection Requirements for Cast Galvanic Anodes for Offshore Applications</td>
</tr>
<tr>
<td>(formerly RP0387)</td>
<td></td>
</tr>
<tr>
<td>SP0388-2014</td>
<td>Impressed Current Cathodic Protection of Internal Submerged Surfaces of Carbon Steel Water Storage Tanks</td>
</tr>
<tr>
<td>(formerly RP0388)</td>
<td></td>
</tr>
<tr>
<td>SP0408-2014</td>
<td>Cathodic Protection of Reinforcing Steel in Buried or Submerged Concrete Structures</td>
</tr>
<tr>
<td>(formerly RP0408)</td>
<td></td>
</tr>
<tr>
<td>TM0101-2012</td>
<td>Measurement Techniques Related to Criteria for Cathodic Protection on Underground or Submerged Metallic Tank Systems</td>
</tr>
<tr>
<td>TM0102-2002</td>
<td>Measurement of Protective Coating Electrical Conductance on Underground Pipelines</td>
</tr>
<tr>
<td>TM0105-2012</td>
<td>Test Procedures for Organic-Based Conductive Coating Anodes for Use on Concrete Structures</td>
</tr>
<tr>
<td>TM0108-2012</td>
<td>Testing of Catalyzed Titanium Anodes for Use in Soils or Natural Waters</td>
</tr>
<tr>
<td>TM0109-2009</td>
<td>Aboveground Survey Techniques for the Evaluation of Underground Pipeline Coating Condition</td>
</tr>
<tr>
<td>TM0190-2012</td>
<td>Impressed Current Laboratory Testing of Aluminum Alloy Anodes</td>
</tr>
<tr>
<td>TM0211-2011</td>
<td>Durability Test for Copper/Copper Sulfate Permanent Reference Electrodes for Direct Burial Applications</td>
</tr>
<tr>
<td>TM0294-2007</td>
<td>Testing of Embeddable Impressed Current Anodes for Use in Cathodic Protection of Atmospherically Exposed Steel-Reinforced Concrete</td>
</tr>
<tr>
<td>TM0497-2012</td>
<td>Measurement Techniques Related to Criteria for Cathodic Protection on Underground or Submerged Metallic Piping Systems</td>
</tr>
</tbody>
</table>

Join NACE International and obtain unlimited free downloads of NACE standards and reports! For information on joining NACE, or to purchase standards and reports if not a member, go to nace.org.